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Introduction

Construct a “Good” classfier with new regularization
method.

Output : y

I “Cat”

Model
p(y|x,0)

e Recognition should be robust againt minor
perturabtation!
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57.7% confidence 8.2% confidence 99.3 9% confidence

[Goodfellow, et al 2015]

e Adversarial training ahchieved good
generalization performance on MNIST.
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Adversarial examples for unlabeled inputs

e Define the difference between p(y
0) as.
Axr(r, 2™, 0) = KL[p(y|lz™, 0) |p(y|=™ + 7, 6)]

x,0) and p(y|x+r,

e Define *virtual® adversarial perturbation as:

(n)
Tv—adv

= arg max{Akr(r, ™, 0); ||r||2 < €}

(¢ - norm constraint)

Virtual Adversarial Training (VAT)

e [ocal Distributional Smoothness(LDS)

v-adv’

e L DS regularized objective function

N
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(A : balance factor, N: num of labeled examples,
N’ num of labeled and unlabeled examples)

Advantages of our method

e Applicability to both supervised and
semi-supervised training.

e At most two hyperparameters (¢ and A).
o In our experiments, only optimized .

e Parametrization invariant formulation.

e |ow computational cost.

Adversarial example

LDS for linear regression and logistic regression

e Linear regression,
LDS(z,0) o €||0]|°

e | ogistic regression p(y=1

x, 0)

LDS(z, 6) ~ %a(e%) (1— o (872)) 6]

Computation of LDS

e Seemingly insurmountable bottleneck of computing
LDS.

I'v-adv — al'§ IIlELX {AKL(Ta £z, 0)7 IITHQ < 6}

e This can be computed fast! (See |)

Approximation of r -

e Approximate A, with 2nd Taylor expansion:
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Axy,(r,x,0) = §?°TH(:L', 0)r

H(.’E, 9) = VVTAKL (?“, X, 9)‘,,».:0

e r . Is alsothe dominant eigenvector of H(x,
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&) with magnitude ¢ :
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eu(r, ),

u(x,0) is 1st eigen vector of H(x,6)

—Eigen vector of H(x,0) can be approximated
easily with...

e Power iteration method :
d<+ Hd

o d is approaching 1st eigen vector of H(x,0)

e Finite difference method :
VTAKL(?” + &d, x, 9)|T:0 — V. Arr (?", 4 18 9)|T:0
§
V. Agrp(r+ &d, z,0)|—o
¢ a
—For nerual network, we can get r__._with just two

additional back-propagations (one @ power method, one @
the grad of LDS)

Hd =

Summary of approximation of r

adv

Algorithm 1 Generation of 7"

v-adv

Function GenVAP(Q,:r(”),E,Ip,E)

1. Initialize d € R! by a random unit vector.
2. Repeat Foriinl... /[, (Perform /,-times power method)

d+ V. Akr(r+&d, z(n), 0)|r—o
3. Return ed

* In our experiment, we set the number of power iteration Ip fo 1.

Demo : 2D synthetic dataset

Semi-supervised learning tasks (permutation invariant tasks)

e MNIST
2 . . 2
4
o 1hiddenlayer NN 7.5 . T e
classifier for two labels °| ,°° . 9] 4 W™ ) e SVHN (street view housing numbers) § -

-1 . ° 1 * - o 73,257 training samples (did not use\
%5 21 @ 1§ 2 %2 -1 0 1 2 “extra’set) :

(a) Moons dataset (b) Circles dataset e NORB (NYU Object Recognition

Benchmark)

e |earing curves on MLE and VAT o 24,300 training samples

(@) Moons > To demonstrate the performance of semi-supervised
@ZDH - learning, We picked up 1000 samples as labeled samples
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e Contour plot of p(y=e|x,0) on MLE, L2 and VAT é :
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TSVM MTC DG VAT (ours) Ladder

networks
TSVM: Transductive SVM, MTC: Manifold Tangent Classifier, DG:Deep Generative Model

e SVHN (1000 labeled) e NORB (1000 labeled)
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Conclusion

e Our approach was effective for supervised and
semi-supervised learning for benchmark datasets.

e \With only 1 hyperparameter ¢, our method
achieved good performance.

Supervised learning task for MNIST

e MNIST (permutation invariant task)
o 60000 training samples
o 784-1200-600-300-150-10NN

0 ADAM[Kingma’ 2015 optimizer
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e Uploaded on github for reproduction of results
on synthetic dataset and MNIST results.
See https://github.com/takerum/vat .
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SVM Dropout

Adversarial  VAT(ours) Ladder
training networks


https://github.com/takerum/vat

