Synthetic Gradient Methods with Virtual Forward-Backward Networks

Takeru Miyato^{1,2}, Daisuke Okanohara¹, Shin-ichi Maeda^{3,(*)}, Masanori Koyama⁴

{miyato, hillbig, ichi}@preferred.jp, koyama.masanori@gmail.com

Preferred Networks, Inc. 2.ATR cognitive mechanisms laboratories
Kyoto University 4.Ritsumeikan University
Shin-ichi Maeda currently belongs to Preferred Networks

Synthetic gradient for decoupling neural networks (Jaderberg, et al. 2016)

In synthetic gradient method, the parametric model predicts the gradients coming from the top layer, i.e. synthesizing gradients.

-The updates of each layer are free from forward and backward locking.

• The gradient of loss w.r.t. the weight W_l of the *l*-th layer: $\frac{\partial \ell}{\partial W^l} = \frac{\partial \ell}{\partial h_l} \frac{\partial h_l}{\partial W^l} = \delta_l \frac{\partial h_l}{\partial W^l}$

For the gradient synthesizer in the original paper (Jaderberg eta al. 2016), they used the label information *y* for the contextual information *c*, and used a model that takes the concatenated vector [*h*, *y*] as the input:

Preferred Networks

(This work) Proposed model of gradient synthesizer

- where h_l is hidden layer of the network.
- Approximate gradient δ_l from hidden layer h_l and context vector c (label) with a parametric model (gradient synthesizer) to be trained:

 $\delta_l pprox \hat{\delta}_l(h_l,c)$

 Train the gradient synthesizer by minimizing L2 loss between synthetic gradient and true gradient:

$$e_l(\hat{\delta}_l) := \|\delta_l - \hat{\delta}_l\|_2^2$$

- $h \quad y \qquad \quad \widehat{\delta}(h,y)$
- (a) The model used in the original paper.(Jaderberg's model)

$\hat{\delta}(h,y):=g([h,y])$

- However, Jaderberg's model for gradient synthesizer has little relation to *the gradient derived from the objectivefunction of the target task*.
- We introduce *virtual forward-backward networks* (VBFN). VBFN is a model that produces synthetic gradient with a function which is analogous in its structure to the one derived from the objective function of the target task.
- The derivative of the original tasks can be represented by:

Cosine similarity on the true gradient and synthetic gradient

 VFBN improved the quality of synthetic gradients over the original model in terms of cosine distance.

Experiments:

 $\delta_{l}(h, y) := \frac{\partial \ell(y, fwd(h))}{\partial h} = bwd(h) \times (\partial_{fwd(h)}\ell(y, fwd(h)))$ fwd : forward function after h that is derived from $p(Y|x, \theta)$, bwd : the derivative of fwd w.r.t. h.

• Replacing the fwd above with *virtual approximator* $v_f(h; \Phi)$, we get our **VFBN** gradient synthesizer: $\hat{\delta}_l(h, y)_{\text{VFBN}} := \frac{\partial \ell(y, v_f(h; \phi))}{\partial h} = v'_f(h; \phi) \times \partial_{v_f(h)} \ell(y, v_f(h; \phi))$

 \circ (e.g) For softmax classification on *h*, the VFBN should be:

 $\hat{\delta}(h, y) := W_v^{\mathrm{T}}(y - softmax(W_v h))$

Experiments: CIFAR-10 classification with ResNet-110

Figure 2: Decoupling of ResNet-110.

Test error $(\%)$	
BackProp Bottom half with back prop	$\begin{array}{c} 5.15 \\ 5.76 \end{array}$
Subnetwork-wise supervised loss	5.71
(Synthetic Gradient models) Jaderberg's small-ResNet Jaderberg's Linear VFBN (ours, $\alpha_{gs} = 0$) VFBN (ours, $\alpha_{gs} = 1e-3$)	$20.45 \\ 15.56 \\ 5.73 \\ 5.51$

Figure 3: Learning curves on CIFAR-10

Table 2:Test error rates on CIFAR-10

(The test error is calculated by averaging over 3 different random seeds)

- subnetworks, and used 4-layered (2-ResNet modules) CNN as VFBN.
 - The learning curve of the Jaderberg's model fall significantly behind the BP, while our VFBN keeps its pace with the BP throughout.
 - The performance with VFBN is 5.51 % error rate, which is better than the baseline such as half-ResNet (5.76%) and subnetwork-wise supervised loss learning (5.71%), but worse than standard BackProp.

References

Jaderberg, Max and Czarnecki, Wojciech Marian and Osindero, Simon and Vinyals, Oriol and Graves, Alex and Kavukcuoglu, Koray. *Decoupled neural interfaces using synthetic gradients.* arXiv preprint, 2016