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Synthetic gradient for decoupling neural networks
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(This work) Proposed model of gradient synthesizer

In synthetic gradient method, the parametric model predicts the gradients

coming from the top layer, i.e. synthesizing gradients. A R, y] .
-The updates of each layer are free from forward and backward locking. 0 ;Tez%r;%?ilhz?/pfsre(j?ggr:;ig eta

e The gradient of loss w.r.t. the “ information y for the contextual
weight 7, of the /-th layer: information ¢, and used a model

e For the gradient synthesizer in
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e Approximate gradient , from original paper. o However, Jaderberg's model
. ,| hidden layer , and context vector (Jaderberg’s model) for gradient synthesizer has
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trained: = | objectivefunction of the
5 A~ 51( hy, c) 0 target task.
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e T[rain the gradient synthesizer by
oynihetic gradiont and trae -/ * We introduce vitual
)r/a dient: J forward-backward networks
J - - | (VBFN). VBFN is a model that
e1(01) = |01 — 15 produces synthetic gradient with
4 h a function which is analogous in
its structure to the one derived
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Experiments: e The derivative of the original tasks can be represented by:
: T : : : ol(y, fwd(h
Cosine similarity on the true gradient and synthetic gradient 0u(h,y) :== ( 57 ) _ bwd(h) X (Ofwacn)¢(y, fwd(h)))
fwd : forward function after h that is derived from p(Y |x, 6),
e VFBN improved the quality of synthetic gradients over the original bwd : the derivative of fwd w.r.t. h.
model in terms of cosine distance.
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E’l_ﬂ —05 00 05 10 El_ﬂ —05 00 05 10 o (e.g) For softmax classification on %, the VFBN should be:
Cosine similarity Cosine similarity A T
6(h,y) := W, (y — softmazx(W,h))
(a) on MLP (b) on CNN

Experiments: CIFAR-10 classification with ResNet-110

. e s e o i , e \We applied VFBN on decoupling ResNet-110 into 2
T o] Ressookt | ResBlockly 1 ResBlockl | ResBlock-3 [ [Softmax, subnetworks, and used 4-layered (2-ResNet modules)
I " — g S [y S ) S—— | CNN as VFBN.

o The learning curve of the Jaderberg's model fall
significantly behind the BP, while our VFBN keeps its

Test error (%) 1 pace with the BP throughout.
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(The test error is calculated by averaging over 3 Decoupled neural interfaces using synthetic gradients.
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