
Spectral Normalization for Generative Adversarial Networks

<u>Takeru Miyato</u>, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida

Generated images on ImageNet

hot pot

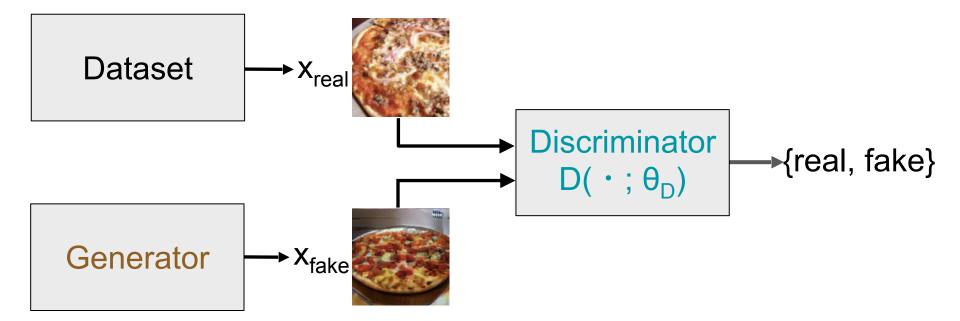
spider's web

Dandie Dinmont

(Odena et al., 2017)

Spectrally normalized GANs(Ours)

cardoon


Agenda

• Method of spectral normalization

• Experimental results

• Some "new" results not shown in the paper

Generative adversarial networks (GANs)

Training the discriminator and generator

Alternately iterate:

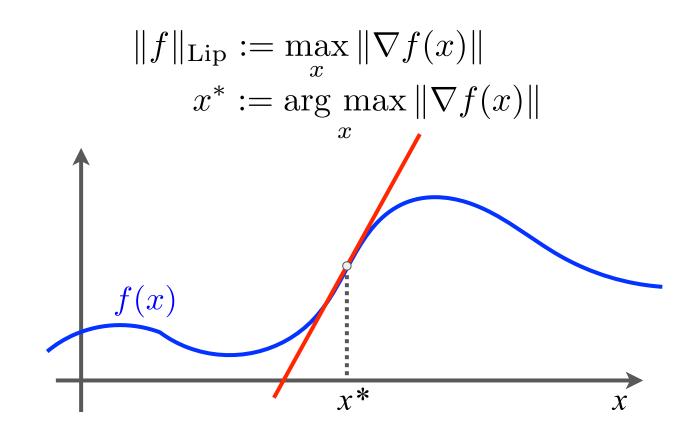
- Discriminator update

 $\begin{aligned} \theta_D \leftarrow \theta_D + \alpha \left\{ \nabla_{\theta_D} \mathcal{E}_{q(x)} [\log D(x; \theta_D)] + \mathcal{E}_{p_G(x)} [\log(1 - D(x; \theta_D))] \right\} \\ q(x): \text{dataset} \quad p_G(x): \text{generator} \end{aligned}$

- Generator update

 $\theta_G \leftarrow \theta_G + \beta \nabla_{\theta_G} \mathcal{E}_{p_G(x)}[\log D(x; \theta_D)]$

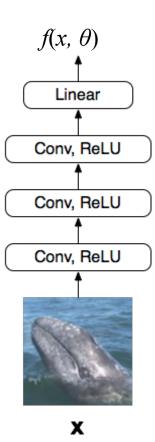
Problem: Instability of training


The optimal solution of D given the current G:

 $D^*(x) := \operatorname{sigmoid}(f^*(x))$ $\nabla_x f^*(x) = \frac{1}{q(x)} \nabla q(x) + \frac{1}{p_G(x)} \nabla p_G(x)$

Unbounded when the either denominator is 0

Need to impose Lipschitz constraint on f(x)


Lipschitz constant $||f||_{Lip}$

Formulation of the discriminator

Discriminator $D(x,\theta) := \mathcal{A}(f(x,\theta))$ $f(x,\theta) := W^{L+1}a_L(W^La_{L-1}(W^{L-1}(\dots a_1(W^1x))))$

- -x: input
- - \mathcal{A} : top activation function (e.g. sigmoid)
- $\theta = \{W^1, \dots, W^{L+1}\}$: weight matrices
- a_1, \ldots, a_L : activation functions (e.g. ReLU)

Impose Lipschitz constraint

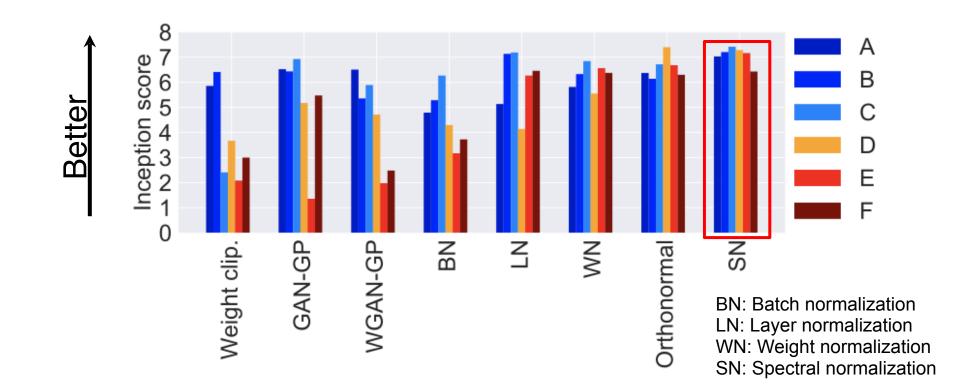
Lipschitz constant of $f(x,\theta)$ is bounded by the product of the **spectral norm of** W (=the largest singular value of W).

$$\|f\|_{\text{Lip}} \leq \prod_{l=1}^{L+1} \sigma(W^l) \quad \text{(Assume } \|a_l\|_{\text{Lip}} = 1, \text{for } l = \{1, ..., L\})$$

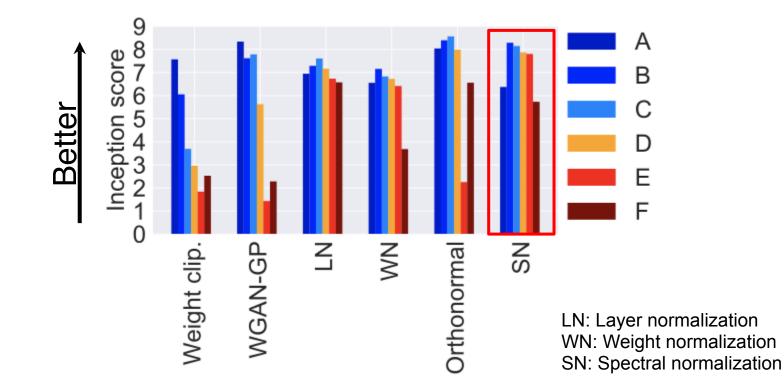
Spectral norm : $\sigma(A) := \max_{\boldsymbol{h}: \boldsymbol{h} \neq \boldsymbol{0}} \frac{\|A\boldsymbol{h}\|_2}{\|\boldsymbol{h}\|_2} = \max_{\|\boldsymbol{h}\|_2 \leq 1} \|A\boldsymbol{h}\|_2$

Spectral normalization (SN)

Normalize the weight by its **spectral norm** $\sigma(W)$:


$$\bar{W}_{\rm SN}(W) := W/\sigma(W)$$
$$(\Rightarrow \sigma(\bar{W}_{\rm SN}) = 1)$$

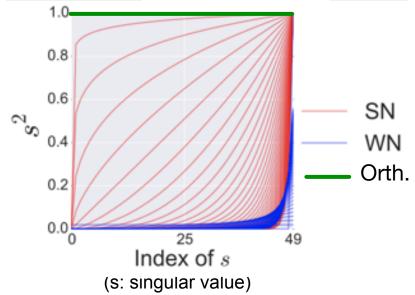
Advantages of spectral normalization (SN)


- Easy to incorporate SN into existing discriminator model Just replace the standard layer with the spectrally normalized layer
- Computationally light

 $\sigma(W)$ can be approximated easily with small computational cost

Results (CIFAR-10)

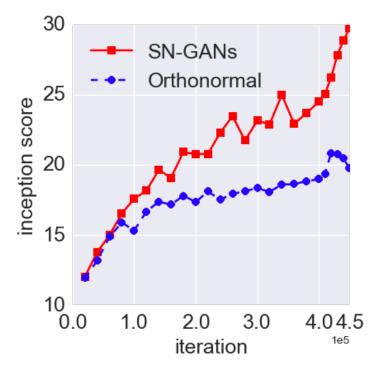
Results (STL-10)



Spectral Normalization explained from "Spectral" perspective

- WN requires "the **sum** of singular values of each weight matrix to be some **constant**".
- This will inadvertently encourage the weight matrix to have low rank
- = The discriminator will be looking at very few features of the images.

SN: spectral normalization WN: weight normalization Orth.: orthonormal regularization


Comparison of the singular values with SN, WN and Orth.

Results (ImageNet, 128px)

Results (ImageNet, 128px)

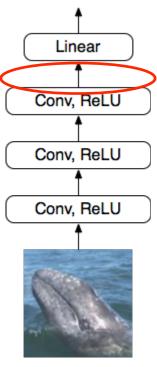
Conditional GANs with projection discriminator (Miyato and Koyama, ICLR2018)

Generated images (128px, ImageNet)

Generated Images (256px): (trained only on dog and cat images)

English springer

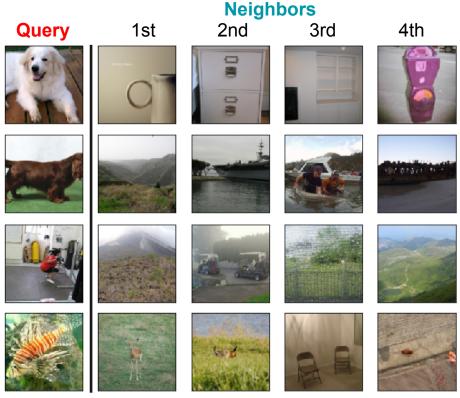
Pekinese


Linx

Nearest neighbors in the discriminator feature space

We used the discriminator trained "without category label supervision"

$$egin{aligned} f(oldsymbol{x}, oldsymbol{ heta}) &:= oldsymbol{w}^{\mathrm{T}} oldsymbol{\phi}(oldsymbol{x}) \ d(oldsymbol{x}_1, oldsymbol{x}_2) &:= |oldsymbol{\phi}(oldsymbol{x}_1) - oldsymbol{\phi}(oldsymbol{x}_2)| \end{aligned}$$



Nearest neighbors with L1 distance

(a) in the discriminator feature space

(b) in **raw pixel** space

Other examples

Query

Neighbors

Other examples

Neighbors

Thank you!

- Code, generated images, and pretrained models are available at: <u>https://github.com/pfnet-research/</u> <u>sngan_projection</u>
- Chainer-GAN-lib: <u>https://github.com/pfnet-research/</u> chainer-gan-lib

