Artificial Kuramoto Oscillatory Neurons (AKOrN) Takeru Miyato¹ Sindy Löwe² Andreas Geiger¹ Max Welling² ¹University of Tuebingen ²University of Amsterdam

Synchronization occurs everywhere around us...

Synchronization is ubiquitous in nature and is a key mechanism for information processing in the brain. A famous model is called the Kuramoto model (1975), which is a simple dynamical model that describes the synchronization of oscillators. We incorporate a generalized version of the Kuramoto model into the neuronal dynamics.

AKOrN

Essence of AKOrN: Multi-dimensional oscillators evolving dynamically on hyperspheres

AKOrN $\dot{\mathbf{x}}_i = \mathbf{\Omega}_i \mathbf{x}_i + \operatorname{Proj}_{\mathbf{x}_i} (\mathbf{c}_i + \sum \mathbf{J}_{ij} \mathbf{x}_j)$ where $\operatorname{Proj}_{\mathbf{x}_i} (\mathbf{y}_i)$ dynamics:

AKOrN-based networks

1. Create initial C and X

- initial conditional signal **C**⁽⁰⁾
- Initialize oscillators **X**⁽⁰⁾ by sampling from uniform distribution on the sphere.

2. Update oscillators

- Process the input to make the
 Update oscillators by the dynamics of AKOrN Iterate T times and obtain X(I, T)
 - The Readout module creates new conditional signal **C**^(I) from **X**(I, T)
 - $X^{(I)} := X(I, T)$ is passed to the next layer
 - Stack multiple [Kuramoto layer + Readout] modules

$$\mathbf{x}_i) = \mathbf{y}_i - \langle \mathbf{y}_i, \mathbf{x}_i \rangle \mathbf{x}_i$$

3. Convert the final states to task representations

 The final C^(L) is used to make the final prediction for the task

• E.g.: For image classification, **C**^(L) is further processed by (pooling+) the softmax classifier.

bind features, enable better reasoning, and

Synchronization dynamics ied robust predictions in deep neura networks.

Better reasoning with test-time inference The Kuramoto layer behaves like an energy-based model, enabling two ways to perform test-time inference.

Task: fill blanks so that vertical. horizontal lines, and each 3x3 sub-block have all digits [1-9], Models are trained to classify the digits on blank squares.

9		1	5		З		6	
3	6		2				1	8
2		7		4	6			9
		4		7	2		5	
1		9	3			8	4	
	7		8			9		
6	5							4
4		8			9	3	7	
				5	1	2		

Models are trained on CIFAR-10 image classification tasks and are evaluated randomly/naturally perturbed images

Confidence

Project page

Binding features on natural images Among well-known self-supervised learning models, AKOrN's features align best with objects in the scene.

Visualizing clustered features of self-supervised learning models. Models are trained on ImageNet in a self-supervised manner (SimCLR)