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Synchronization occurs everywhere around vs...

Synchronization is ubiquitous in nature and is a key mechanism for information processing in the brain. A famous model is
called the Kuramoto model (1975), which is a simple dynamical model that describes the synchronization of oscillators.
We incorporate a generalized version of the Kuramoto model into the neuronal dynamics.
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Kingsbury (2019)

Essence of AKOrN: Multi-dimensional oscillators evolving dynamically on hyperspheres
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AKOrN %; = Q;x; + Projy. (c; + Z.L-jxj) where Proj, (yi) = yi — (¥i, Xi) X

dynamics:
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1. Create initial Cand X 2.

® Process the input to make the ®

initial conditional signal C'©
o

e Initialize oscillators X'? by
sampling from uniform
distribution on the sphere.

AKOrN-based netw]orks
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Update oscillators

Update oscillators by the dynamics of AKOrN
o Iterate T times and obtain X(l, T)

The Readout module creates new conditional

signal C!" from X(I, T)
X.=X(l, T) is passed to the next layer
Stack multiple [Kuramoto layer + Readout]
modules

3. Convert the final states to task
representations
e The final C" is used to make the
final prediction for the task
o E.g.: Forimage classification,
cY is further processed by
(pooling+) the softmax
classifier.

Interbrain correlation of neural activity
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Binding features on natural images

Among well-known self-supervised learning models, AKOrN'’s features aligh best with objects in the scene.
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Visualizing clustered features of self-supervised learning models.
Models are trained on ImageNet in a self-supervised manner (SImCLR)

Better reasoning with test-time inference

The Kuramoto layer behaves like an energy-based model, enabling two ways to perform test-time inference.

Histogram of energy values of different oscillators
(blue: correct )
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Task: fill blanks so that vertical,

horizontal lines, and each 3x3 10 A
sub-block have all digits [1-9], |
Models are trained to classify 0 L=
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the digits on blank squares. o
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Overall performance

Robust and calibrated predictions

AKOrN-based networks are robust to random and natural perturbations, with calibrated predictions.
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Models are trained on CIFAR-10 image classification tasks and are evaluated randomly/naturally perturbed images



