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Adversarial examples
and (Virtual) Adversarial training

e Adversarial examples exist in the state of the art models on
image domain.
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[Goodfellow, et al 2015]
e Training models to be robust to the adversarial examples

(Adversarial training) improves generalization performance
(Goodfellow et al 2015, Miyato et al 2016).

e Virtual Adversarial Training (miyato et al, 2016) can be applied to
semi-supervised learning tasks and achieves good
performances on image classification tasks.

On CIFAR-10 with 4000 labeled

20

On SVHN with 1000 labeled

—

Ch
—
2]

Test error (%)

Test error (%)

on
on

Cat GAN GAN with M mode! Witrual 0
feature adversarial -
matching generative

Methods model

SWWAE Skip GAN with M model Vitrua

feature adversarial
mathcing

Methods

Adversarial training on text

e Abundant unlabeled examples in text domain.
e Training on text can take a very long time (e.g. recurrent models).
o (Virtual) Adversarial training requires little tuning of
hyperparameters.
e In our work, we applied adversarial and virtual adversarial
training to semi-supervised text classification.
o Achieved state of the art performance.

Model

We use a simple LSTM model for text classification and
define adversarial perturbations on its word embeddings,
instead of the sequence of words.

Y
e A sequence of Twords : {w®|t =1,...,T} e ‘L
e Label:y | : . T
e Embedding matrix : V € R(E+1)xD I T Ny b F
e Normalized embeddings: —ollY Cale? Gelle® mo
Vg = v, — B(v) where E(v) = ZK: fijv;, Var(v) = ZK: fi(v; — E(v))? ,lj(l} ,j(?} ,wL} @j
V/Var(v) = j=1

Proposed (Virtual) adversarial loss
on the text classification model

Just add the below losses to the neg. log-likelihood!

e Adversarial loss

N
1
Ladv(e) = _N Z logp(yn ‘ Sn T Tadv,n 9)

n=1

where A
radv = —€g/||g||2 where g = Vs logp(y | s;0).

( @ : a constant set to the current parameters

S : a concatenation of a sequence of word embedding vectors [’5’(1)5 oy f’(T)] )

e Virtual Adversarial loss

N
1 .
Lyaav(8) = =7 D KL [p(- | 83 0)IIp(: | 87 + Pv-aavn'; 0)]
/=1
(N’ is the number of both labeled and unlabeled examples )
where

rv.adv = €9/||g||2 where g = V g1 4KL [EI’( | SQé)HP(' | s+ d;é)}

Experiments
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Adversarial Training Methods for Semi-Supervised Text Classification UpenH

e \We first do pretraining following Dai and Le [2015] (recurrent language model).

o This procedure is important to (virtual) adversarial training, because the perturbations on the initialized embeddings can

be interpreted as the perturbations of “semantics”.
e Dataset (4 semi-supervised and 1 supervised dataset):

Classes Train Test Unlabeled Avg.T" MaxT
IMDB 2 25,000 25,000 50,000 239 2,506
Elec 2 24,792 24,897 197,025 110 5,123
Rotten Tomatoes 2 9596 1066 7,911,684 20 54
DBpedia 14 560,000 70,000 - 49 953
RCV1 ) 15,564 49,838 668,640 153 9,852

e \We optimized dropout rate on embeddings and norm constraint € o
adversarial and virtual adversarial training with each validation set.
e \We used the method with only embedding dropout as the baseline.

Results on IMDB

n

e Virtual adversarial training achived comparable performance with the state of the

art semi-supervised method.
Learning curves on test set

Test performance on IMDB
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(a) Negative log likelihood SA-LSTM (Dai & Le, 2015)
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e (Virtual) Adversarial training Improve rained word embeddings
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On other semi-supervised datasets
(Elec, RCV1 and Rotten Tomatoes)

e Our proposed method achieved state of the art performance on both datasets.

o However, The performance with virtual adversarial training was worse than the baseline on Rotten Tomatoes.

We speculate that Virtual adversarial loss on unlabeled examples would overwhelm the supervised loss, and this

would cause “wrong label” propagation.

Test performance on Elec and RCV1

Test performance on Rotten Tomatoes

Method Test error rate Method Test error rate
Elec RCV1 Baseline 17.9%

Baseline 6.24%  7.40%  Adversarial 16.8%

o 561% 7.12%  Yirtual Adversarial 19.1%

Virtual Adversarial 554% 7.05% Adversarial + Virtual Adversarial 16.6%

Adversarial + Virtual Adversarial 540% 697% NB SVM-bigrams[29] 20.6%

Virtual Adversarial (on bidirectional LSTM) 555% 6.71% CNN*[12] 18.5%

Adversarial + Virtual Adversarial (on bidirectional LSTM) 545%  6.68%  AdaSent” [3T2] 16.9%

Transductive SVM (Johnson & Zhang, 2015b) 1641% 1077% _>A-LSTMTI[4] 16.7%

NBLM (Naive Bayes logisitic regression model) (Johnson & Zhang, 2015a) 8.11% 13.97%

One-hot CNN* (Johnson & Zhang, 2015b) 6.27% 1.71%

One-hot CNNT (Johnson & Zhang, 2016b) 5.87% 7.15%

One-hot bi-LSTM' (Johnson & Zhang, 2016b) 5.55% 8.52%

On supervised datasets (DBpedia)

Test performance on DBpedia

Method

Test error rate

e Achieved state of the art performace

] ] ] o Baseline (without embedding normalization) 0.87%
with virtual adversarial training. e e
Random perturbation 0.85%

Adversarial 0.79%

Virtual Adversarial 0.76%

Bag-of-words(Zhang et al., 2015) 3.57%

Large-CNN(character-level) (Zhang et al., 2015) 1.73%

SA-LSTM(word-level)(Dai & Le, 2015) 1.41%

N-grams TFIDF (Zhang et al., 2015) 1.31%

SA-LSTM(character-level)(Dai & Le, 2015) 1.19%

Word CNN (Johnson & Zhang, 2016a) 0.84%

Conclusion

e Adversarial and virtual adversarial training are good regularizers for text

classification tasks and achieved state of the art performance.

e With tuning of the additional hyperparameter € , we can improve over the

baseline and achieve state of the art performance.
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