

Unsupervised Learning of Equivariant Structure from Sequences

Takeru Miyato*1,2, Masanori Koyama*1, Kenji Fukumizu^{3,1} *equal contribution 1. Preferred Networks, Inc. 2. University of Tübingen 3. The Institute of Statistical Mathematics

Background

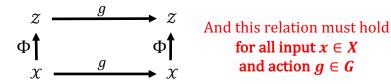
Group structure is a type of compositional structure that can be achieved through **equivariance** relation, which is used in neural networks such as convolution, graphNNs, etc to introduce an informative inductive bias regarding the nature of compositional symmetry underlying the dataset. **But can we learn such a structure in an unsupervised way?** Our work shows that if time-sequential dataset with a certain stationary property, we can learn the underlying symmetries in an unsupervised manner by simply training an auto-encoder to be able to predict the future with linear transition in the latent space.

What is equivariance relation?

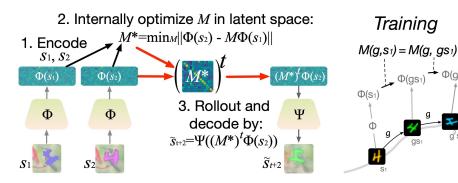
Actions: {translation, rotation, color change, view changes etc...}

× × × ×	N	2	u-	
	R	Ra	- Tend	AN AN

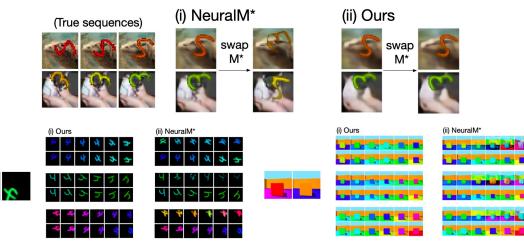
The encoder Φ : $\mathcal{X} \rightarrow \mathcal{Z}$ is said to be equivariant if the following diagram commutes with respect to *the action of all* $g \in G$:



Method: Meta-sequential prediction (MSP)



MSP successfully learns equivariance relation without supervision



Disentanglement emerges as a byproduct of equivariance

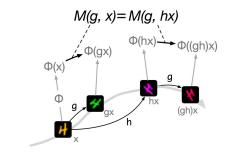
M^*	={…}	=X{		···}×	
(1) Floor hue	(2) Wall hue (3) Object hue		(1) (2) (3) (4) (5) (5)		
(1) elevatic				0 2 4 6 8 10 12 14	
(1)	000	0	(1) 🐝 🐝 🐐	444	A A
(2)	000	0	(3) 🐀 🛸 🕯		
	000	~	****	1 44 44 et e	1 4 × 1

Theoretical guarantees

MSP learning mechanism **provably guarantees** that the trained model captures the components of equivariance relation:

1. In-Orbit Equivariance is

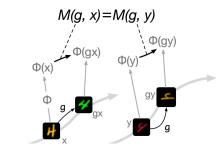
always satisfied by the MSP model if the group is commutative, compact and connected



2. Across-Orbit Equivariance is **almost** satisfied by the MSP model if Intra orbital homogeneity is satisfied: that is,

$\mathbf{M}(\boldsymbol{g},\boldsymbol{x}) = \boldsymbol{P}_{xy}\,\boldsymbol{M}(\boldsymbol{g},\boldsymbol{y})\boldsymbol{P}_{xy}^{-1}$

is always satisfied



Empirically however, MSP learns the "Full equivariance" with $P_{xy} = I$ on various dataset with differing nonlinearity, suggesting a still yet unproven property of the algorithm encouraging the unsupervised learning of equivariance relation!