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Theoretical	guarantees
MSP learning mechanism provably guarantees that the
trained model captures the components of equivariance
relation:
1.	In-Orbit	Equivariance	is	
always satisfied by the MSP model if the group is
commutative, compact and connected
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Empirically however, MSP learns the ”Full equivariance” with
𝑃!" = 𝐼 on various dataset with differing nonlinearity,
suggesting a still yet unproven property of the algorithm
encouraging the unsupervised learning of equivariance relation!

Method:	Meta-sequential	prediction	(MSP)

What	is	equivariance	relation?

The	encoder	Φ:	𝒳 ->	𝒵 is	said	to	be	equivariant	if		the	following	
diagram	commutes	with	respect	to	the	action	of		all 𝒈 ∈ 𝑮:	

And	this	relation	must	hold	
for	all	input	𝒙 ∈ 𝑿
and	action	𝒈 ∈ 𝑮𝒳 𝒳
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MSP	successfully	learns	equivariance	relation	
without	supervision

Disentanglement	emerges	as	a	byproduct	of	equivariance	

{ ……}{ = }×M* ×
2.	Across-Orbit	Equivariance	is	
almost satisfied	by	the	MSP	model		if	Intra	orbital	homogeneity	is	
satisfied:	that	is,	

𝐌 𝒈, 𝒙 = 𝑷𝒙𝒚 𝑴 𝒈,𝒚 𝑷𝒙𝒚%𝟏

is	always	satisfied

Actions:	{translation,	rotation,	color	change,	view	changes	etc…}

Group structure is a type of compositional structure that can be achieved
through equivariance relation, which is used in neural networks such as
convolution, graphNNs, etc to introduce an informative inductive bias
regarding the nature of compositional symmetry underlying the dataset.
But can we learn such a structure in an unsupervised way? Our work
shows that if time-sequential dataset with a certain stationary property,
we can learn the underlying symmetries in an unsupervised manner by
simply training an auto-encoder to be able to predict the future with
linear transition in the latent space.
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