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Background MSP successfully learns equivariance relation Theoretical guarantees
Group structure is a type of compositional structure that can be achieved without supervision MSP learning mechanism provably guarantees that the
through equivariance relation, which is used in neural networks such as NeuraIM* (ii) Ours trained model captures the components of equivariance
convolution, graphNNs, etc to introduce an informative inductive bias (“'UE sequences) relation:
regarding the nature of compositional symmetry underlying the dataset. "I'—\ swap swap 1. In-Orbit Equivariance is
But can we learn such a structure in an unsupervised way? Our work M* always satisfied by the MSP model if the group is
shows that if time-sequential dataset with a certain stationary property, R commutative, compact and connected
we can learn the underlying symmetries in an unsupervised manner by m@m
simply training an auto-encoder to be able to predict the future with M(g, Xx)=M(qg, hX)
linear transition in the latent space. /
. . . . (i) Ours (ii) NeuralM* () Ours (i) NeuralM* (D(hx)‘*q)((gh) X)
What is equivariance relation? OEEEEE ks 00
Actions: {translation, rotation, color change, view changes etc...} [WEEERSEER t R WSR3 O(x)
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o o _ Disentanglement emerges as a byproduct of equivariance 2. Across-Orbit Equivariance is
The encoder ®: X -> Z is said to be equivariant if the following almost satisfied by the MSP model if Intra orbital homogeneity is
y geneity
diagram commutes with respect to the action of all g € G: { ﬂ n . o } — E X { . . . - .. }X ﬂ satisfied: that is,
And this relation must hold R T Tt I g.x) =P,y M(g,y
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Method: Meta-sequential prediction (MSP) o Ey gy f \ o(gy)
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2. Internally optimize M in latent space: Tra/n/ng , ()
M*=minu||D(s:) - MD(s1)| (1) elevation (2) azimuth . (1) shape ,(2) color (3) translation
1. Encode “ ! M(g.5)= Mg, s/ : : gy.
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decode by: N @ ‘ ‘ ‘ ‘_._ g g g g Empirically however, MSP learns the "Full equivariance” with
t 3u=P(M*)'D(s2)) v g e g @ U \) Ll o R P, =1  on various dataset with differing nonlinearity,
g i) N Poalasal aoalnaal gl nsglasg] s suggesting a still yet unproven property of the algorithm
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